Impact of Gentamicin Concentration and Exposure Time on Intracellular Yersinia pestis
نویسندگان
چکیده
The study of intracellular bacterial pathogens in cell culture hinges on inhibiting extracellular growth of the bacteria in cell culture media. Aminoglycosides, like gentamicin, were originally thought to poorly penetrate eukaryotic cells, and thus, while inhibiting extracellular bacteria, these antibiotics had limited effect on inhibiting the growth of intracellular bacteria. This property led to the development of the antibiotic protection assay to study intracellular pathogens in vitro. More recent studies have demonstrated that aminoglycosides slowly penetrate eukaryotic cells and can even reach intracellular concentrations that inhibit intracellular bacteria. Therefore, important considerations, such as antibiotic concentration, incubation time, and cell type need to be made when designing the antibiotic protection assay to avoid potential false positive/negative observations. Yersinia pestis, which causes the human disease known as the plague, is a facultative intracellular pathogen that can infect and replicate in macrophages. Y. pestis is sensitive to gentamicin and this antibiotic is often employed in the antibiotic protection assay to study the Y. pestis intracellular life cycle. However, a large variety of gentamicin concentrations and incubation periods have been reported in the Y. pestis literature without a clear characterization of the potential influences that variations in the gentamicin protection assay could have on intracellular growth of this pathogen. This raised concerns that variations in the gentamicin protection assay could influence phenotypes and reproducibility of data. To provide a better understanding of the potential consequences that variations in the gentamicin protection assay could have on Y. pestis, we systematically examined the impact of multiple variables of the gentamicin protection assay on Y. pestis intracellular survival in macrophages. We found that prolonged incubation periods with low concentrations of gentamicin, or short incubation periods with higher concentrations of the antibiotic, have a dramatic impact on intracellular growth. Furthermore, the degree of sensitivity of intracellular Y. pestis to gentamicin was also cell type dependent. These data highlight the importance to empirically establish cell type specific gentamicin protection assays to avoid potential artificial data in Y. pestis intracellular studies.
منابع مشابه
Functional and Structural Analysis of a Highly-Expressed Yersinia pestis Small RNA following Infection of Cultured Macrophages
Non-coding small RNAs (sRNAs) are found in practically all bacterial genomes and play important roles in regulating gene expression to impact bacterial metabolism, growth, and virulence. We performed transcriptomics analysis to identify sRNAs that are differentially expressed in Yersinia pestis that invaded the human macrophage cell line THP-1, compared to pathogens that remained extracellular ...
متن کاملComparison of 2 antibiotics that inhibit protein synthesis for the treatment of infection with Yersinia pestis delivered by aerosol in a mouse model of pneumonic plague.
INTRODUCTION Intentional release of Yersinia pestis will likely be propagated by aerosol exposure. We explored the effects of neutropenia on the outcome of doxycycline and gentamicin therapy. METHODS Female BALB/c mice were exposed to 20 LD(50) of Y. pestis CO92 by aerosol. Treatments were saline (negative control), levofloxacin at 15 mg/kg every 12 h (positive control), doxycycline at 40 mg/...
متن کاملYersinia pestis type III secretion system-dependent inhibition of human polymorphonuclear leukocyte function.
Human polymorphonuclear leukocytes (PMNs, or neutrophils) are the primary innate host defense against invading bacterial pathogens. Neutrophils are rapidly recruited to sites of infection and ingest microorganisms through a process known as phagocytosis. Following phagocytosis by human PMNs, microorganisms are killed by reactive oxygen species (ROS) and microbicidal products contained within gr...
متن کاملA Rapid Molecular Test for Determining Yersinia pestis Susceptibility to Ciprofloxacin by the Quantification of Differentially Expressed Marker Genes
Standard antimicrobial susceptibility tests used to determine bacterial susceptibility to antibiotics are growth dependent and time consuming. The long incubation time required for standard tests may render susceptibility results irrelevant, particularly for patients infected with lethal bacteria that are slow growing on agar but progress rapidly in vivo, such as Yersinia pestis. Here, we prese...
متن کاملSimple and Rapid Detection of Yersinia Pestis and Francisella Tularensis using Multiplex-PCR
Background: Yersinia pestis and Francisella tularensis cause plague and tularemia, which are known as diseases of the newborn and elderly, respectively. Immunological and culture-based detection methods of these bacteria are time-consuming, costly, complicated and require advanced equipment. We aimed to design and synthesize a gene structure as positive control for molecular detection of these ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017